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Abstract

Background: Cellular interaction networks can be used to analyze the effects on cell signaling and other
functional consequences of perturbations to cellular physiology. Thus, several methods have been used to
reconstitute interaction networks from multiple published datasets. However, the structure and performance of
these networks depends on both the quality and the unbiased nature of the original data. Due to the inherent
bias against membrane proteins in protein-protein interaction (PPI) data, interaction networks can be compromised
particularly if they are to be used in conjunction with drug screening efforts, since most drug-targets are
membrane proteins.

Results: To overcome the experimental bias against PPIs involving membrane-associated proteins we used a
probabilistic approach based on a hypergeometric distribution followed by logistic regression to simultaneously
optimize the weights of different sources of interaction data. The resulting less biased genome-scale network
constructed for the budding yeast Saccharomyces cerevisiae revealed that the starvation pathway is a distinct
subnetwork of autophagy and retrieved a more integrated network of unfolded protein response genes. We also
observed that the centrality-lethality rule depends on the content of membrane proteins in networks.

Conclusions: We show here that the bias against membrane proteins can and should be corrected in order to
have a better representation of the interactions and topological properties of protein interaction networks.

Background
Membrane proteins are critical to diverse physiological
functions and are directly implicated in many diseases.
They represent one-third of the genome and 60% of the
known drug targets [1]. Thus, it is important to be able to
examine the cellular context in which membrane proteins
interact with each other and with other cellular compo-
nents, such as the components of signaling pathways.
Functional gene networks including high quality mem-
brane interactions would be particularly useful to probe
crosstalk between signaling pathways and thereby improve
our understanding of how proteins function synergistically
and antagonistically to control cellular phenotypes. By
providing the context for cellular processes needed to
interpret the results, network modeling is also important
to understand how genes modulate the activity of drugs
and reagents [2] and in high throughput screening projects
using shRNAs, siRNAs, deletion libraries, etc. [3-5].

Networks have been used most successfully to provide
insights into the functions of the proteins encoded by the
yeast genome [6-10], since the most complete and best
annotated publicly available gene interactions are available
for this widely used model organism (BIOGRID database,
version 2.0.57).
In probabilistic network models, statistical associations

established for pairs of genes are used to generate a net-
work in which the genes likely to participate in the same
cellular pathway or process are connected by probabilistic
functions. Each connection in the network is scored with
the likelihood of the linked genes belonging to the same
pathway. This results in a probabilistic view of interacting
genes in which, instead of being defined as ‘interacting’ or
‘non-interacting’, each potentially interacting pair is placed
in a graded spectrum of confidence levels.
Predictions performed using an interaction network are

typically based on the assumption that the experimental
data is non-biased, which is not always the case [8].
Because the assumption is that interactions that are pre-
sent multiple times are more reliable (given higher weight)
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a bias is introduced due to over-representation by popular
methods for PPI identification, such as the yeast two-
hybrid system (Y2H) [11,12] and affinity capture-mass
spectrometry (affinity capture-MS) [13,14]. The Y2H
method requires that the two proteins localize to the
nucleus; however, integral membrane proteins expressed
in an aqueous nuclear environment may aggregate or mis-
fold [11,12,15], resulting in depletion of these proteins
from the final interaction dataset. Also, the datasets
derived from affinity capture-MS can be biased against
integral membrane proteins, because biochemical purifica-
tions require detergents to isolate proteins away from the
lipid bilayer [16]. In addition, it is impossible to optimize
the solubilization conditions for all membrane proteins
and complexes due to the large-scale nature of these pro-
jects [17,18]. Furthermore, membrane proteins tend to be
expressed at a lower level compared to soluble proteins
[19], and affinity capture-MS preferentially detects abun-
dant proteins [8,20]. The potential under-representation of
membrane proteins can have important effects on the
computational prediction of the localization and function
of gene products due to underestimation of reliability.
Considering that genomic studies suggest that membrane
proteins make up ~25% to ~33% of the predicted proteins
in an organism [6], network bias may help to explain why
many disagreements occur when predicting the localiza-
tion of proteins belonging to the secretory pathway [21].
Recently, some approaches have measured interactions

between proteins in their natural cellular context, dimin-
ishing the bias against membrane proteins. Tarassov
et al. [16] have performed a systematic binary screen for
PPIs in yeast using protein-fragment complementation
assays (hereafter PF-PCA) based on murine dihydrofolate
reductase. This method provides an alternative approach
to detect PPIs but the PPIs observed show enrichment in
proteins from organelle membranes when compared to
the whole genome [16] suggesting a bias in favor of
membrane proteins. Similarly, Miller et al. [22] used a
modified split ubiquitin yeast two-hybrid technique
(hereafter SU-2HY) specifically designed to increase the
representation of integral membrane proteins, and
observed 1,985 putative interactions involving 536 mem-
brane-associated proteins. This screen was specifically
directed at membrane protein interactions and has iden-
tified large numbers of interactors for some membrane
proteins that were not seen using other techniques.
Genetic interactions tend to be less biased against

membrane proteins although the interpretation of genetic
interactions in a physical cellular context is a major bio-
logical challenge. Nevertheless for any given gene signifi-
cant correlation between the genetic and physical
interaction degree has been observed [4]. Furthermore,
significant overlap between genetic interactions and PPI
pairs (10 to 20%) was also reported by these authors, thus

justifying the utility of genetic interactions for inferring
functional associations between genes. One additional
advantage of including genetic interactions in a probabil-
istic network is that PPIs connect relatively fewer bio-
processes than genetic interactions. Thus, physical
interactions are highly informative of local pathway
architecture but provide a less complete picture of func-
tional modules or interconnections between them [4].
Therefore, to optimally contextualize genes, functional
networks should integrate many sources of evidence of
interaction among proteins and genes. In this way, the
transfer of function annotation occurs from one gene to
another via biological relationships that include informa-
tion such as correlated gene expression [23], correlated
phylogenetic profiles [24], PPIs [25], and phenotyping
experiments [26].
To use gene network neighbors to predict new annota-

tions for genes, such as function and localization, requires
a high-confidence network. In this study a classifier was
trained using Gene Ontology as a gold-standard set of
annotations and validated with an independent dataset of
localization annotations. We provide proof-of-principle
evidence that genes linked in a probabilistic network con-
structed with increased coverage of membrane proteins
can give rise to important insights in membrane biology.
This approach provides a rational and quantitative founda-
tion to analyze and visualize relationships involving mem-
brane proteins, and results in a different view of the yeast
membrane interactome, particularly as it applies to the
centrality-lethality rule.

Results
The bias against membrane proteins
To evaluate the coverage of interactions involving mem-
brane proteins we performed an analysis with all 160,613
yeast genetic and physical interactions present in the
BIOGRID database (version 2.0.57). We divided the
interactions according to the method used to generate
them, and counted the number of interactions involving
at least one membrane protein (GO:0016020 and its chil-
dren GO Terms). We observed a wide variation in both
genetic and physical membrane protein interactions
(63%-11%) depending on the method used to generate
the data (Figure 1A). As expected, the affinity capture-
MS method showed the highest bias against interactions
involving at least one membrane protein. In addition, a
GO enrichment analysis with 1000 interactions randomly
selected from this same dataset showed an under-repre-
sentation of the GO categories “membrane”, “mitochon-
drial membrane”, and “plasma membrane”, with p-values,
after Bonferroni’s correction, of 10-15, 10-3, and 10-2,
respectively. The bias observed with the affinity capture-
MS method has a significant impact on the total coverage
of membrane proteins, since this method contributes
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A) B)

C)

Figure 1 Interactions involving membranes are under-represented in the BIOGRID database. A) Fraction of the interactions identified
using the method specified (below the bars) that involve at least one membrane protein. B) The total number of interactions reported by the
method specified. C) Identification of ontology defined cell compartments that are over-represented by different methods for capturing
interaction data. The extent of over-representation for different ontology defined cell compartments was quantified using BINGO for the
specified methods. The cell compartments and methods were hierarchically clustered according to enrichment (P-values). Many of the over-
represented compartments (red) relate to nuclear localization.
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more than 25% (~40,000 interactions) of the total inter-
actions in the BIOGRID database (Figure 1B), although it
has only ~10% of its interactions involving a membrane
protein (Figure 1A). The method with the highest density
of membrane PPIs was the protein complementation
analysis (PCA), but it represents only about 2% of the
total interactions.
When a global analysis of GO enrichment was per-

formed to identify potential bias in the BIOGRID database,
we observed an under-representation of interactions invol-
ving categories related to “mitochondrion” and “mem-
brane” (Table 1), a result due in part to the predominance
of affinity capture-MS data. We interpret the under-repre-
sentation of mitochondria proteins as a result of the high
fraction of membrane proteins present in this organelle
(42%, 479/1133). In contrast, the analysis of over-repre-
sented GO categories revealed that proteins associated
with complexes and proteins located in the nucleus are
over-represented, with 77% and 47% more interactions
involving these sets of proteins than what would be
expected by chance, respectively (see Table 1 for enrich-
ment p-values). These categories are also highly enriched
in the affinity capture-MS dataset (Figure 1C).
The assumption underlying our interpretation of this

data which led to our hypothesis of bias against membrane
proteins is that membrane proteins engage in at least the
same number of true interactions as other protein classes.
This assumption is based in part on the extensive litera-
ture suggesting that membrane proteins function in com-
plexes, which are a good proxy for interacting proteins.
Moreover, we investigated this directly by evaluating the
distribution of interaction degree normalized by the total
number of interactions in datasets rich in membrane
interactions (e.g., PF-PCA and SU-2HY, both with more
than 65% membrane interactions) or with a poor coverage
of membrane interactions (e.g., two hybrid (2HY), (29%)
and affinity capture-MS (14%)). We normalized the node
degree in order to make the different datasets more com-
parable since the average degree is dependent on the num-
ber of interactions and nodes identified by the method. By
normalizing by the total number of interactions, we
assume the methods detect the same relative number of
nodes, independently of localization (membrane, nucleus,
cytoplasm, etc). Thus, our results are consistent with the
hypothesis that membrane proteins undergo at least as
many interactions as other proteins, since we observed
that datasets rich in membrane interactions tend to have a
higher normalized degree (Figure 2A) than the datasets
with fewer of these interactions.
In order to exclude potential bias from the interaction

detection method used, we also evaluated the normalized
degree for membrane and non-membrane proteins
within datasets (Figure 2B-D). Again, we observed that
membrane proteins have a higher normalized node

degree than other proteins, suggesting the correctness of
our assumption that membrane proteins have at least the
same number of protein-protein interactions as other
protein classes. For example, 52% of membrane proteins
have a normalized degree higher than 0.005 in the two-
hybrid dataset, while only 12% of other proteins have a
degree higher than that (Figure 2D).
Naturally, physically interacting proteins must co-occur

spatially and temporally and any network constructed
must consider that the interaction datasets available are
highly biased to specific locations. We consider this loca-
tion bias as inevitable, and here we apply a new approach
to minimize its adverse effects for membrane network
reconstruction.

The Probabilistic Interaction Network (PIN)
As a consequence of the bias discussed above, a probabilis-
tic network connecting many different types of biological
information between genes and proteins can have as its
main caveat the different properties of the original datasets.
To integrate heterogeneous datasets it is necessary to con-
sider the tradeoff between coverage and prediction perfor-
mance. The simple union of networks results high
coverage but low prediction performance given the quality
of some datasets. One alternative method is to consider the
intersection among the datasets, which results in good pre-
diction performance, but the coverage is low [27]. To over-
come these limitations, we applied a probabilistic approach
to construct a network less biased against membrane pro-
teins. We used a simple and general error model (based on
the hypergeometric distribution) to calculate the probabil-
ity for each interaction occurring at random, followed by
logistic regression to optimize the network performance
for interactions involving membrane proteins by varying
the weights of each network. In this way the network
weights were simultaneously optimized for best prediction
performance on the training set, and the resulting logistic
regression classifier was evaluated using the test set.
Hypergeometric scoring has proven to be robust across

different settings [8,28-32]. It also penalizes highly con-
nected “promiscuous” interactors, since the probability of
occurrence of an interaction with this type of partner is
high in a random network resulting in a proportionally
low score in the network. Hypergeometric scoring favors
interactions between rare proteins over those between
common proteins, because to be predicted to interact,
common proteins must be virtually always observed as
interacting pairs [28].
Here we combined the hypergeometric scoring with

logistic regression to construct a network with less bias
against membrane interactions. This was achieved by the
following steps:
1) As mentioned earlier, although data from PPIs is

usually biased against membrane proteins, some
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Table 1 Analysis of cell compartment enrichment in the BIOGRID database

GO ID GO Term Median p-value

Overrepresented categories:

32991 macromolecular complex 4.96E-105

43234 protein complex 1.80E-78

44428 nuclear part 1.06E-66

5622 intracellular 2.74E-54

44424 intracellular part 3.72E-53

44422 organelle part 8.61E-51

44446 intracellular organelle part 8.61E-51

5634 nucleus 2.43E-52

43229 intracellular organelle 8.85E-48

43226 organelle 8.85E-48

31981 nuclear lumen 1.27E-53

44451 nucleoplasm part 5.98E-38

5654 nucleoplasm 1.75E-38

44464 cell part 3.54E-33

5623 cell 4.46E-33

43228 non-membrane-bounded organelle 1.67E-34

43232 intracellular non-membrane-bounded organelle 1.67E-34

43233 organelle lumen 1.02E-31

31974 membrane-enclosed lumen 1.02E-31

43231 intracellular membrane-bounded organelle 4.99E-31

43227 membrane-bounded organelle 4.99E-31

16591 DNA-directed RNA polymerase II, holoenzyme 4.98E-11

5694 chromosome 7.67E-15

30529 ribonucleoprotein complex 2.76E-12

5730 nucleolus 6.52E-13

502 proteasome complex 2.37E-06

44427 chromosomal part 1.61E-14

5856 cytoskeleton 3.25E-07

5679 chromatin remodeling complex 1.70E-09

123 histone acetyltransferase complex 5.87E-10

44430 cytoskeletal part 1.65E-05

22624 proteasome accessory complex 9.47E-04

5838 proteasome regulatory particle 9.47E-04

44452 nucleolar part 2.30E-08

5669 transcription factor TFIID complex 7.26E-03

5681 spliceosome 4.85E-04

119 mediator complex 3.91E-04

124 SAGA complex 1.04E-05

5667 transcription factor complex 3.06E-04

812 SWR1 complex 1.15E-03

44453 nuclear membrane part 6.00E-03

Underrepresented categories:

943 retrotransposon nucleocapsid 2.88E-05

31224 intrinsic to membrane 1.22E-05

44429 mitochondrial part 3.18E-04

5740 mitochondrial envelope 4.89E-03
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methods (PF-PCA and SU-2HY) have produced data
with a good coverage of membrane protein interactions
[16,22]. We applied the hypergeometric distribution

model to construct two networks: network A, con-
structed based on interactions data from datasets PF-
PCA and SU-2HY, has 4,452 interactions, and network

Table 1 Analysis of cell compartment enrichment in the BIOGRID database (Continued)

16021 integral to membrane 7.67E-05

44425 membrane part 1.85E-03

5743 mitochondrial inner membrane 7.18E-03

5739 mitochondrion 6.34E-03

The median p-values were calculated after sampling 10 random sets of 1000 interactions from BIOGRID. P-values are shown after Bonferroni’s correction for
multiple hypotheses.

A) B)

C) D)

Figure 2 Membrane associated interactions have a higher normalized node degree than other nodes in yeast. A) Comparison of the
cumulative distribution of normalized degree for membrane associated and other nodes from different datasets. Datasets with a higher
proportion of membrane associated interactions (PF-PCA and SU-2HY) have higher normalized node degree. B-D) Comparison of membrane
nodes with other nodes within single datasets B) Affinity capture-MS, C) BIOGRID, D) Two hybrid used to generate interaction data. 2HY, Two
hybrid; BIOGRID, raw data from BIOGRID; SU-2HY, Split-ubiquitin two hybrid; AC-MS, Affinity capture-mass spectrometry; PF-PCA, protein-fragment
complementation assay. Between parentheses is the number of nodes.
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B, constructed with BIOGRID data excluding these
two datasets. Network A is highly enriched in interac-
tions involving membrane proteins (corrected p-value =
10-70).
2) We generated 10 networks using different weights of

network A and B, which were combined by a simple logis-
tic regression model with one free parameter (Figure 3)
[31].
3) Then we used the guilt-by-association approach to

select the best network from step 2. Our guilt-by-associa-
tion approach works by transferring annotation from one
gene to another via gene interactions. Thus, a specific
localization may be assigned to a gene based on the profile

of its neighbors. We generated a functional linkage net-
work with edge weights reflecting the probability that two
genes co-localize (same GO Slim term); for that, we used
the networks from step 2 to assign a score to each combi-
nation (candidate gene, GO Slim term) based on the
weights of interactions between the candidate gene and
genes currently assigned to that GO term. For example,
if a gene is connected to several genes located in the mem-
brane, this gene gets a higher score (for membrane locali-
zation) than other gene that is not connected to
membrane genes.
4) We applied the guilt-by-association approach to

optimally select one of the 10 networks generated in step
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Figure 3 Optimization of the weighting of the two networks in PIN. A) PIN was constructed by the optimized combination of two
networks: A (enriched in membrane interactions) and B (the rest of BIOGRID). The Area Under Curve (AUC) of Precision-Recall plots for the top
5,000 interactions was used for selecting the optimum weight for network B using membrane proteins from GO Slim as an established
benchmark dataset. The AUC was calculated for different weights for network B, and the weight corresponding to highest prediction
performance and higher number of membrane interactions (AUC = 0.62) was chosen (weight of network B = 0.5). The increased coverage of
membrane interactions reflected as the weight of network A (B) in the logistic regression is increased (decreased).
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2. For that, a random set of 2/3 and 1/3 of the genes in
GO Slim were selected as training and test sets, respec-
tively. In the end, we selected the network with the
weights that showed the best crossvalidation performance
using AUC of precision versus recall curve and using
membrane genes as reference.
Thus, we used two measurements for optimality cri-

teria: 1) The area under the precision versus recall curve
for a random set of 2/3 and 1/3 of the membrane genes
in GO Slim selected as training and test sets, respectively
and 2) the increased coverage of membrane interactions
reflected by the weight of network A in the logistic
regression. The weight we chose as optimal for con-
structing the probabilistic interaction network (PIN) was
0.5 and corresponds to the point at which the area under
the curve reaches a plateau (Figure 3 and Additional
file 1). Beyond this point the variation is very small,
(from 0.62 to 0.63) and unlikely to be significant. We
selected this point as optimal within the plateau as it
resulted in the highest coverage of membrane proteins.
Please, see Methods for more details.
The rapid change in area under the curve observed

around the weights 0.3-0.5 is likely the result of the trade-
off between membrane coverage and prediction perfor-
mance in our model. This suggests that network A, while
rich in membrane interactions, does not have as much
prediction performance as the other BIOGRID interac-
tions combined. Overall prediction performance follows
the relative weight of the networks A and B and the abrupt
change identifies the point at which adding additional
weight to the interactions in network A begins to decrease
the overall prediction performance unacceptably. We
observed good coverage of network A in PIN (Additional
file 2, Figure S1) with 828 interactions retained from net-
work A in the top 5000 interactions. Thus, by optimizing
the combination of these two networks we obtained a
good representation of membrane interactions while
maintaining a good prediction performance.
The reason we selected the PPI datasets SU-2HY and

PF-PCA as network A was because these datasets showed
high quality and high coverage of membrane interactions.
To demonstrate the value of using selected high quality
datasets we constructed a second network where instead
of using a membrane-rich interaction dataset we used a
PPI network from iREF database as network A’. This iREF
network does not contain data used to construct PIN, has
9,412 interactions and 16.2% of its interactions involve at
least one membrane protein. The membrane network
used to construct PIN (network A) has fewer interactions
but 71.3% of them are membrane interactions. Following
the same approach as we applied to PIN, we plotted the
area under the curve and membrane interaction content
versus the weight of the iREF network (Additional file 2,
Figure S2). As above, the weight selected (0.8) represents

the beginning of the plateau of area under the curve (0.38)
with the highest coverage of membrane interactions (657
interactions). For comparison, the weight selected for net-
work A in PIN (0.5) resulted in a network of 706 mem-
brane interactions and area under the curve of 0.62. Thus,
PIN has ~7% (706/657) more membrane interactions with
63% higher area under the curve (0.62/0.38). These results
suggest that the performance of our approach depends on
the fraction and accuracy of membrane interactions in
datasets used to construct the network. This performance
and coverage of membrane interactions could not be
reached by using the hypergeometric model alone. As
shown below, PIN’s performance was superior to the
hypergeometric model in all of the evaluations we
performed.
To provide additional information on the network prop-

erties we used the top 5000 interactions to evaluate the
network density of PIN compared to the hypergeometric
model alone. The network density is the number of con-
nections present out of all possible connections [33]. PIN
produced a network with 2999 nodes (network density =
0.001) in the main network. Using only the hypergeo-
metric model resulted in a network with the similar
density but fewer nodes (2723).

Performance evaluation of PIN
To analyze the performance of our PIN, we used a pub-
licly available subcellular localization dataset generated
from a yeast strain collection expressing full-length pro-
teins tagged at the carboxyl-terminus with green fluores-
cent protein [34]. While the bias observed in this dataset
is lower than techniques such as mass spectrometry, it is
still present (e.g. tail-anchored membrane proteins are
expected to be under-represented). Nevertheless, interac-
tions involving two genes whose proteins localize in the
same compartment are more likely to be authentic than
interactions between proteins located in different subcel-
lular compartments. Thus, the interactions in the PIN
were ranked in decreasing order of statistical significance
and for each cutoff (window size = 1000 interactions), we
counted the number of interactions involving genes
annotated as located in the same compartment. As
expected, we observed a relative increase in coverage of
membrane proteins when using PIN (Figure 4A). We
also observed a higher fraction of interactions from the
same compartment in comparison with the hypergeo-
metric model for compartments related to membrane
especially the endoplasmic reticulum (ER) (Figure 4B).
These interactions are likely to be primarily interactions
that represent the traffic of proteins between organelles
[16]. Furthermore, the PIN and the hypergeometric
model performed similarly for nuclear proteins and mito-
chondria (Figures 4C and 4D), indicating that the PIN is
not biased against these proteins.
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Nuclear proteins showed an inverted behavior: a
decrease in interaction density both using PIN and the
hypergeometric model. We interpret this last result par-
tially as a consequence of both procedures minimizing

the effects of nuclear contaminants (false positives) that
bind to DNA (transcription factors) or RNA (binding
factors). These contaminants are usually co-purified
with DNA or RNA, thus forming a bridge with other
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proteins. Because they are common contaminants, these
indirect interactions are penalized under both the PIN
and the hypergeometric model [35]. As a result, when
the PIN was divided in quintiles of significance, an ana-
lysis of the cellular component of the Gene Ontology
showed a significant enrichment of nuclear proteins
mostly in the 4th-5th quintiles (lowest statistical signifi-
cance) (Additional file 2, Figure S3-A). Similarly only
low significance interactions showed enrichment in bio-
logical processes and molecular functions that typically
involve protein binding to DNA or RNA (Additional
file 2, Figures S3-B and C).
The hypergeometric model performed similarly to PIN,

with an increased number of interactions compared to the
random network scores for both mitochondria (Figure 4-
D) and cytoplasm proteins (not shown). The reason the
two networks showed an accentuated increase of interac-
tions in mitochondria may be because 42% of mitochon-
drial proteins are located in the membrane, which
represents a high fraction of the total mitochondria pro-
teins. As expected for a high confidence interaction net-
work and consistent with the PIN removing the bias
against membrane proteins, rather than introducing a bias
towards them, minimal enrichment in Gene Ontology
terms was observed in the 1st quintile of significance
(Additional file 2, Figure S3 A-C).
In our present study, we removed the bias against

membrane proteins by increasing the relative contribu-
tion from a small number of datasets with high quality
membrane protein data. As a result, there would be an
unavoidable increase in false positive interactions for
lower significance scores as discussed above. To examine
this issue further we examined our PIN for over- and
under-representation of GO categories as evidence of
bias. Assuming that these proteins, e.g. proteins from
complexes, have the same average number of interactions
as other protein classes, there should not be any enrich-
ment of these classes in the PIN compared to the whole
genome since the technique would ideally reflect the nat-
ural composition of the interactome. Most GO categories
were not highly over-represented in quintiles lower than
4th (Additional file 2, Figure S3 A-C). For example, pro-
tein complex only begins to be over-represented in 3rd

quintile. Taken together these results suggest that our
model successfully compensated for the pre-existing bias
against membrane proteins in the network, resulting in a
more representative collection of real interactions that
are not connected to other unrelated GO categories.
We also downloaded from Gene Ontology a list of 48

proteins from membrane complexes in yeast. Then, we
counted the number of interactions involving two proteins
from this list (Additional file 2, Figure S4). As expected,
we observed that PIN showed a higher coverage of interac-
tions for these complexes than the hypergeometric model

or BIOGRID raw data. We also evaluated the coverage of
1223 transport genes (GO: 0006810) using the same
approach. Again, the coverage of interactions involving
transport genes was higher using PIN than the other two
networks.
As another approach to validate PIN, we characterized

network performance using a positive reference set (PRS)
and a random reference set (RRS) for protein interactions
[36,37]. The PRS set contained 9,412 unique interactions
not previously used in our analysis and was downloaded
from iRefIndex database, which consolidates protein inter-
actions from 10 databases [38]. This reference set was gen-
erated by selecting those interaction datasets present in
the iRefIndex database but not in the BIOGRID database
used to construct PIN. These datasets were indexed by the
PubMed ID in order to select inedit data as our PRS. For
RRS, 100,000 unique random interactions were generated
with the same node degree distribution in PRS from a list
of all genes present in BIOGRID. Because there is no avail-
able gold standard for non-interacting proteins and
because randomly chosen protein pairs are unlikely a
priori to interact, our RRS serves as a reasonable negative
control set [37].
Comparing the performance of PIN with the hypergeo-

metric model or BIOGRID raw data for the detection of
PRS (Figure 5A and 5C) or RRS (Figure 5B and 5D) inter-
actions revealed that more PRS interactions were detected
using PIN than with the other datasets. We also observed
that the increased detection of interactions in PRS pairs by
PIN did not correspond to a high relative number of posi-
tive-scoring RRS pairs (false positives) for membrane
interactions (Figure 5B). In contrast, the hypergeometric
model, showed an increased sensitivity at the expense of
selectivity since it detected slightly more membrane inter-
actions using RRS (higher false positive rate) than the
BIOGRID raw data (Figure 5D).
Even though PIN was optimized for the detection of

membrane interactions it showed a higher coverage of
PRS (higher true positive rate) than the hypergeometric
model for all genes (Figure 5C) and even nuclear proteins
(not shown) without increasing coverage of RRS (Figure
5D). It is likely that by increasing the coverage of bona
fide membrane interactions, the other interactions in the
lower quintiles were the higher confidence interactions
from BIOGRID. Thus, decreasing the bias against mem-
brane proteins increased the proportion of true interac-
tions in the high confidence quintiles independently of
their localization.

Network properties
Our PIN allows an in-depth analysis of membrane pro-
teins in the context of their network surroundings. The
spatial properties of the network that are preserved under
continuous deformations of interactions connecting
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surrounding nodes - topological properties - can only be
analyzed at the network level, as genes/proteins by them-
selves cannot provide full information about the robust-
ness of cellular function [39]. Thus, we assessed the
network topologies for the PIN with the aim of uncovering
intrinsic properties that distinguish our network from 1) a
network constructed based on a hypergeometric model

alone and 2) a network constructed by randomizing the
PIN scores. Another goal was also to evaluate the impact
that the bias against membrane proteins would have over
the topological properties of the resulting networks. Thus,
we selected a cut-off resulting in 5,000 interactions for
each network. We denote these sub-networks by adding
the suffix -5K, (e.g., PIN-5K). As expected, PIN-5K showed
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Figure 5 PIN provides higher coverage of authentic interactions and increased rejection of spurious interactions. A) PIN (RED) permits
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a higher fraction of membrane proteins after considering
the total number of nodes in the network: PIN-5K (21%,
639/2999), PIN with random scores-5K (18.5%, 527/2843),
and the hypergeometric model-5K (19%, 519/2723).
To evaluate the potential to form hubs, we calculated

the probability of a node having a specific number of
interactions as the number of nodes in a given degree
interval divided by the total number of nodes in the net-
work. We observed that PIN-5K showed lower probabil-
ity to form hubs (arbitrarily defined as nodes that have
more than 10 interactions) than the other two networks.
Only 56 (1.87%) of the PIN-5K nodes were hubs, while
for PIN with random scores-5K and the hypergeometric
model-5K networks 140 (4.92%) and 70 (2.57%) of the
nodes were hubs, respectively. Unlike PIN-5K, the
hypergeometric model-5K network showed enrichment
of hub genes related to RNA processing (p = 6 × 10-7),
macromolecule biosynthetic process (p = 3 × 10-7) and
mRNA polyadenylation (p = 3 × 10-10), all genes asso-
ciated with false positives (Additional file 3). Consistent
with this interpretation, most functional categories with
a difference in enrichment between these networks are
those related to genes localized in the nucleus, which is
the main cell compartment with over-representation in
BIOGRID. As expected, the enrichment p-values
observed with the hubs in PIN-5K were consistently
higher (lower significance) when compared to what we
observed with hypergeometric model-5K network.
Together these results suggest that the process of
removing bias against membrane proteins resulted in
decreased over-representation of some unrelated gene
categories, as discussed above.
Having detected a different functional composition in

the networks, we next evaluated some network proper-
ties that could be affected by removing the bias against
membrane proteins. Thus, for each node we calculated
the clustering coefficient Cw, which is defined as the
number of interactions between the neighbours of a sin-
gle node divided by those that could possibly exist. This
coefficient is related to the existence of functional clus-
ters [40]. We observed that even though PIN-5K con-
tains fewer hubs, it is more clustered (Cw = 0.170) than
either the randomized network (Cw = 0.006) or the
hypergeometric model network (Cw = 0.165). For the
top 5000 interactions from each network, the lower
number of hubs together with the higher clustering
coefficient, observed for the PIN suggests a process
where the interactions were more equally distributed
among the genes, resulting both in increased clustering
and decreased average degree.

Membrane interactions and the centrality-lethality rule
The centrality-lethality rule (CLR) states that there is a
correlation between degree (number of interactions/

protein) and the essentiality of the corresponding gene
[41]. Thus, proteins and genes highly connected with
other partners tend to be essential and therefore some
of their biological characteristics could be explained by
topological features [42,43]. However, He & Zhang [42]
suggested that the CLR is unrelated to highly connected
genes, but could be explained by the fact that hubs have
large numbers of interactions, and thus they have higher
tendency to engage in essential interactions. Ivanic et al
[44] showed that PPI networks constructed by using
interactions from affinity purification procedures have
good correlation between degree and abundance while
Y2H PPI networks do not. According to the authors, if
there is a degree/abundance correlation, there is also a
degree/essentiality relationship since the correlation
between essentiality and abundance is well established.
However, the relationship between essentiality and hubs
could be artificial due to essential proteins generally
being more abundant [44], and therefore methods
biased toward abundant proteins would be artificially
inflated with interactions involving essential proteins. In
fact, Batada et al [45] reported that the Y2H dataset
from Ito et al [12] has a weak correlation between
degree and essentiality. This same dataset was analyzed
elsewhere, where no difference between degree distribu-
tions of essential and nonessential proteins was observed
[44]. As we noted previously, membrane proteins tend
to be expressed at low levels, and thus we hypothesized
that the process of removing bias against membrane
proteins could also affect the relationship between
degree and essentiality, thus affecting the foundations of
the CLR.
To test the hypothesis that the membrane interaction

content of a network affects the CLR, we downloaded
the list of essential genes from the Saccharomyces Gen-
ome Deletion Project [46]. Then we visually compared
the degree distributions of essential and nonessential
membrane proteins to determine if the degrees are
drawn from the same underlying population. We
observed different degree distributions of essential and
nonessential genes that varied with method used to gen-
erate the data. Interestingly, we also observed that the
membrane associated genes did not support the CLR
(Figure 6A-C).
To evaluate the relationship between membrane con-

tent and the CLR, we developed a nonparametric mea-
sure, the Index of Degree and Essentiality (Indess). The
Indess(k) of a network is the fraction of the essential
genes with degree greater than k divided by the fraction
of the non-essential genes with degree greater than k. We
applied this measure of association to assess the correla-
tion between degree and essentiality over the networks
obtained from all PPI techniques with more than 300
unique interactions available in BIOGRID. Interestingly,
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when we arbitrarily used k = 5, we observed a negative
Spearman correlation (-0.72, p = 0.012) between Indess
(5) and the fraction of membrane proteins interacting in
the network, suggesting a negative correlation of the CLR
and the content of membrane interactions (Figure 7A).
Consistent with this interpretation, the Indess(k) showed
a negative correlation with the membrane content inde-
pendent of k (Additional file 2, Figure S5).
We also applied another nonparametric measure of

association, the Kendall’s tau rank correlation coefficient
[43], to assess the relationship between degree and essenti-
ality. This analysis also showed a negative correlation
between the CLR and the content of membrane interac-
tions in the network, suggesting that the CLR is valid
mainly for interaction datasets with a lower coverage of
membrane PPIs (Figure 7B). Thus, the most frequently
used PPI technique with the lowest coverage of membrane
interactions, affinity capture-MS, showed a strong correla-
tion between degree and essentiality as measured by the
Kendall’s tau (0.277, p = 9.46E-96) and Indess (1.864),
while PF-PCA and SU-2HY, two datasets enriched in
membrane interactions, showed no significant correlation
between degree and essentiality (Table 2).
The analysis above used the PIN generated using an

optimized weight for the network enriched in membrane
interactions (network A). To further evaluate the impact
of our approach on the CLR we calculated the correla-
tion between the weight of network A, and the Kendall’s
tau and Indess(5). Removal of the bias against mem-
brane proteins showed an impact on the distribution of
node degree between essential and nonessential genes
(Table 3), reflected in a negative Spearman coefficient
between membrane interaction content and the Ken-
dall’s tau (-0.90, p = 0.0002) and Indess(5) (-0.78, p =
0.005). These results show that the correlation between
high node degree proteins and essentiality that resulted
in the CLR is biased due to interaction datasets with an
under-representation of membrane proteins.
Ivanic et al [44] found that all yeast PPI datasets contain

significant enrichments of essential-essential interactions,
suggesting that essential proteins have higher probability
of interacting with each other than non-essential proteins
have of interacting with either essential or non-essential
proteins. If essential proteins have a higher degree than
non-essential proteins, we expect to observe more
mutually interconnected high-degree hubs than would
occur at random, independently of membrane PPI con-
tent. To test this, we calculated assortativity coefficients
for the data. As assortativity coefficients reflect the correla-
tion between the degrees of all nodes on two opposite
ends of a link [47], networks with a positive assortativity
coefficient are likely to have mutually interconnected
high-degree hubs. On the other hand, networks with a
negative assortativity coefficient are likely to have widely

C)

B)

A)

Figure 6 Contrary to the centrality-lethality rule, the
distribution of degree for membrane associated genes is
similar or higher for non-essential compared to essential
nodes. Membrane associated genes were identified in each dataset
by Gene Ontology and divided into essential (black) and not-
essential (red) gene sets. Each plot shows the cumulative
distribution of node degree for a network constructed using
interaction data from the technique specified. A) BIOGRID, B)
Biochemical Activity, C) PF-PCA. Between parentheses is the number
of nodes.
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distributed high-degree hubs. We observed that most
datasets showed negative assortativity coefficients that
were not correlated with membrane interaction content
(Table 2). Similarly we observed no correlation between
membrane interaction content with density, which is the
mean network degree, or with mean clustering coefficient
(Additional file 2, Table S1). Assuming that essential pro-
teins do have a higher probability of interacting with each
other [44], our results suggest that these proteins are not
hubs, since our results suggest that hubs don’t necessarily
interact with each other.

Analysis of Unfolded Protein Response (UPR) using PIN
All of our data suggest that the PIN is a more robust accu-
rate description of the interactions between proteins and
genes in cells than either raw BIOGRID data or BIOGRID
data refined using a hypergeometric model. Therefore, we
have applied the PIN to the analysis of PPI data for pro-
teins involved in the UPR. In eukaryotic cells, most trans-
membrane proteins fold and mature in the endoplasmic
reticulum (ER). Thus, proteins enter the ER as unfolded
polypeptide chains where they acquire their final confor-
mational structure during or after synthesis completes. To
manage this process, cells adjust the protein-folding capa-
city of the ER according to synthetic requirements, thereby
ensuring that the quality of cell-surface and secreted pro-
teins can be maintained. The UPR is a eukaryotic stress
response initiated by detection of unfolded proteins in the
lumen of the ER, and triggers a compensatory response

mediated by a large number of co-regulated genes. As the
protein folding events involved occur in the ER, the cellu-
lar response therefore involves mostly biological processes
related to proteins located in the membrane/ER [48].
Thus, we reasoned that our PIN approach should

recover biological processes occurring in the UPR more
accurately than a probabilistic network constructed with-
out reduction of bias against membrane proteins. In order
to verify this hypothesis, we evaluated the fraction of GO
Slim terms interacting with 243 UPR genes downloaded
from Jonikas et al [49] by using three different networks:
1) PIN, 2) a network constructed using BIOGRID data
and the hypergeometric model, which is actually a prob-
abilistic network constructed without removing the bias
against membrane proteins, and 3) a network constructed
with raw data from the BIOGRID.
We observed that our model showed a better perfor-

mance when compared to the hypergeometric model for
UPR-related GO Slim Terms. This can be visualized in
Figure 8A, where for the least 13 covered GO Slim terms
those more unlikely to be related to UPR were globally
under-represented in our PIN. For example, genes located
in the nucleus or related to processes occurring in the
nucleus (transcription, DNA binding, etc) were under-
represented. On the other hand, some terms relatively
more likely to participate in UPR showed a tendency to be
better represented (e.g. endoplasmic reticulum, transporter
activity and vacuole) in the most 13 covered GO Slim
terms. Although other terms that might be involved in
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Figure 7 Membrane associated gene interaction data does not support the centrality-lethality rule. A) The Indess (5), an ad hoc indicator
of the centrality-lethality rule, is negatively correlated with the content of membrane interactions (Spearman correlation = -0.72, p = 0.012). Each
data point represents a different PPI technique. B) The correlation between Kendall’s tau, another ad hoc indicator of the centrality-lethality rule,
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Table 2 Correlation between membrane interaction content and centrality-lethality rule for different PPI techniques

Technique Unique interactions Fraction of membrane interactions Kendall’s tau Kendall’s tau (p-value) Indess (5) Assortativity coefficient

Affinity Capture-MS 26350 0.14 0.277 9.46E-96 1.864 -0.071

Co-localization 351 0.18 0.181 4.14E-04 1.996 0.214

Co-purification 1217 0.28 0.127 1.07E-04 1.558 -0.227

Reconstituted Complex 1959 0.29 0.167 3.49E-11 2.069 -0.101

Two-hybrid (without Miller et al (2005)) 7040 0.29 0.141 9.11E-20 1.657 -0.107

Affinity Capture-Western 4953 0.30 0.188 3.92E-24 1.894 0.112

BIOGRID (all techniques) 94877 0.30 0.190 4.98E-70 1.312 -0.102

Affinity Capture-RNA 1187 0.31 0.119 5.07E-05 1.833 -0.857

Biochemical Activity 5355 0.31 -0.034 0.104 0.792 -0.460

Co-fractionation 574 0.58 0.044 0.274 0.833 -0.163

PF-PCA 2395 0.65 0.018 0.505 0.904 0.171

SU-2HY 1941 0.99 -0.004 0.928 1.187 -0.074

Note: the table was sorted in ascending order according the column with the “fraction of membrane interactions”.

The Kendall’s tau and Indess(5) are both inversely correlated to the content of membrane interactions, while the assortativity coefficient is not.
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UPR have a slightly increased representation in the net-
work constructed with BIOGRID raw data (e.g. vesicle-
mediated transport, membrane fraction), it is likely that
this is due to the trade-off between sensitivity and specifi-
city. As a result of the low specificity of the raw BIOGRID
data, it ends up selecting more true positives at the
expense of a much higher number of false positives.
Although there are nuclear genes involved in UPR, they

constitute a small fraction of the total UPR related genes
and therefore, nuclear genes could be taken as negative
standard controls. The slightly lower relative prevalence
of interactions involving these categories and UPR genes
in PIN indicates that although our network has a higher
true positive rate (bona fide UPR interactions) compared
to the hypergeometric network, this did not correspond
to a higher false negative rate as represented by the cov-
erage of nuclear GO Slim Terms. Thus, these results sug-
gest globally that for UPR related genes our approach
was powerful in reducing the false positive rate without
unduly sacrificing sensitivity as evidenced by a higher
coverage of interactions with GO Slim terms related to
UPR processes.
The 3 global networks have the same number of inter-

actions, although they have been scored differently. After
selecting the 243 UPR genes and their neighbors in PIN
and in the hypergeometric network in which the bias
against membrane proteins was not removed, we
observed that our model showed more interactions: 2956
interactions (1127 nodes, 2.62 interactions/node) com-
pared to 2359 interactions (1074 nodes, 2.20 interac-
tions/node) from the hypergeometric network. In
comparison, the raw data from the BIOGRID resulted in
a network with 7049 interactions (1352 nodes, 5.21 inter-
actions/node) consistent with this network containing a
very large number of false positives (Figure 8A). The PIN

interactions for the UPR network are available as a
Cytoscape file in Additional file 4.
Our results suggest that the bias against membrane

proteins seems to be an effect derived mainly from phy-
sical interactions, since after calculating the correlation
between the fractions of GO Slim terms interacting with
UPR genes through genetic and physical interactions
(the bars in Figure 8A), we observed a low correlation
between the fractions identified by PIN and BIOGRID
raw data (Pearson’s correlation = 0.09). On the other
hand, the correlation was very high (0.88) when using
only genetic interactions. We presume this effect is
because genetic interaction data is not as biased against
membrane proteins.
We also evaluated the distribution of PPIs retrieved by

the 243 UPR gene set in the PIN, hypergeometric model
and BIOGRID networks and observed 47, 26, and 21
interactions in the top 20 K interactions, respectively.
Additionally, we evaluated the predictive power of PIN
by using the positive reference set (PRS) and random
reference set (RRS) described above. In fact, PIN was
superior as it retrieved 9 UPR interactions, while the
hypergeometric model and BIOGRID retrieved 4 and 0
interactions in the PRS, respectively. On the other hand,
the RRS had 2, 16, and 18 interactions retrieved by PIN,
hypergeometric model, and BIOGRID, respectively, con-
firming the lower rate of false positives of PIN. The PRS
and RRS sets were not used to construct the networks
and therefore, constituted an independent test set.

Analysis of Autophagy using PIN
Autophagy is a fundamental and phylogenetically con-
served cellular quality control process by which cyto-
plasmic constituents including proteins, protein
aggregates, organelles, and invading pathogens can be

Table 3 Correlation between membrane interaction content and centrality-lethality rule for different weights of
network B

Weight of network A Fraction of membrane interactions Kendall’s tau Kendall’s tau (p-value) Indess (5)

0.0 0.320 0.23 7.00E-57 4.639

0.1 0.322 0.23 1.00E-54 4.701

0.2 0.323 0.23 5.55E-55 4.717

0.3 0.328 0.23 3.25E-54 4.667

0.4 0.328 0.23 1.22E-54 4.740

0.5 0.344 0.22 1.55E-51 4.467

0.6 0.525 0.13 9.14E-15 1.405

0.7 0.721 -0.01 0.663 0.751

0.8 0.762 -0.03 0.152 0.784

0.9 0.762 -0.03 0.135 0.784

1.0 0.764 0.00 0.994 0.953

Note: the table was sorted in ascending order according the column with the “fraction of membrane interactions”.

The Kendall’s tau and Indess(5) are both inversely correlated to the content of membrane interactions.
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Figure 8 Analysis of coverage of genes involved in unfolded protein response (UPR) and autophagy in PIN compared to
hypergeometric and raw BIOGRID data. For the 13 GO Slim terms with the highest and lowest interactions with UPR or ATG genes in PIN,
the fraction of GO Slim terms was compared for each network. We used the top 20% interactions in each network. A) The distribution of GO
Slim terms suggests that for the UPR network, PIN has many fewer false positives than raw BIOGRID data (e.g. terms related to nucleus). B) The
distribution of GO Slim terms suggests that for the ATG network PIN has many more true positives than the other methods and less false
negatives than the raw BIOGRID data.
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delivered to lysosomes for degradation. It is characterized
by the formation of double-layered vesicles (autophago-
somes) around intracellular cargo for delivery to lyso-
somes and proteolytic degradation. This process occurs
as a response to changes in the internal status of the cell
and/or changes in the extracellular environment [50,51].
In addition to its essential role for cell survival under
nutrient-deprived conditions, autophagy is also involved
in a wide range of physiological and pathological pro-
cesses in eukaryotic organisms [52]. Using the same
approach as for UPR, we observed a similar performance
when we evaluated PIN using bona fide interactions
related to autophagy (Figure 8B), those interactions
involving genes that are probable to be functionally
involved in the UPR process, that is, interactions invol-
ving genes in vacuole, endoplasmic reticulum, etc. The
fraction of the GO Slim term interacting with autophagy
genes was calculated using the top 20% interactions.
Thus, the dramatic over-representation in the uncor-
rected BIOGRID network by GO Slim terms likely due to
the inclusion of false-positives was greatly reduced in the
autophagy PIN. Furthermore, for autophagy related
genes the PIN clearly outperformed the hypergeometric
model in capturing relevant GO Slim terms.
To apply our PIN to overview the network organization

of the autophagy system in yeast it was necessary to
increase the number of genes annotated as related to
autophagy, as only 31 autophagy (ATG) genes have been
reported in yeast so far [52]. Thus, we downloaded the
human autophagy network with 751 interactions (429 pro-
teins) [53]. This physical interaction dataset was generated
by proteomics analysis of mass spectrometry (LC-MS/MS)
data of proteins interacting with 32 human proteins linked
to autophagy or vesicle trafficking. Using this set of 429
proteins, we found in the INPARANOID database [54] a
set of 116 yeast orthologs, which with the addition of 31
yeast genes annotated as ATG-related, was expanded in
our PIN, by including their neighbors. The resulting yeast
autophagy network encompassed 2316 interactions and
982 genes, whose interactions are available as Cytoscape
file in Additional file 4.
To examine the resulting network, we selected the 4

main autophagy-related pathways; starvation-induced
autophagy, the cytoplasm-to-vacuole targeting (CVT)
pathway, pexophagy (an autophagic degradation pathway
for peroxisomes in yeast) and the core machinery for
membrane formation [52]. These pathways are shown in
Figure 9 where the genes that have orthologs in the
human autophagy network are shown in red. As expected,
among the 31 yeast autophagy proteins, the function of
Atg17, Atg29, and Atg31 are required specifically for star-
vation-induced autophagy and they form a ternary com-
plex (Figure 9, the starvation pathway).

We observed that ATG12 was present in the periphery
of both the CVT and pexophagy pathways but was absent
from the starvation pathway. This result was surprising as
while Atg12 is not essential for growth, it is essential for
autophagy and for maintaining viability during starvation
[55] and it occupies a central role in the core autophagy
network by connecting several other ATG genes (ATG3,
ATG7, ATG5, ATG16, ATG11, and ATG10). Atg12 is
part of two protein conjugation systems, each composed
of two ubiquitin-like proteins (Atg8 and Atg12) and
three enzymes (Atg3, Atg7 and Atg10 shown in Figure 9,
the core pathway) that are required for their conjugation
reactions. Atg12 forms a conjugate with Atg5, whereas
Atg8 is conjugated to phosphatidyl ethanolamine, a
major component of various biological membranes. Both
conjugates localize to autophagy-related membranes,
suggesting their direct involvement in the biogenesis of
these membranes [52].
Interestingly, the Atg17-Atg29-Atg31 complex proposed

to function as a conductor together with the Atg1-Atg13
complex in organizing the pre-autophagosomal structure
[52], formed a cohort of genes with ATG11 acting as a
hub (Figure 9, the pexophagy pathway). Although we used
the pexophagy-associated genes ATG11, ATG25, ATG28,
ATG30, and ATG26 plus their neighbors to select the
interactions representing pexophagy in our network, we
only retrieved the genes interacting with ATG11 and
ATG26 from PIN. The other 3 genes (ATG25, ATG28,
and ATG30) were not present in our autophagy network.
Consistent with our network analysis, all these 3 genes
showed inconsistent nomenclature when we searched the
SGD database [56].
To better organize the information available in the yeast

autophagy network and to reveal larger interacting func-
tional modules, we applied a recently developed algorithm
based on link communities [57]. This algorithm performs
a hierarchical clustering of interactions, that is, instead of
assuming that a functional module is a set of nodes with
many interactions between them, it considers a module to
be a set of closely interrelated interactions. In contrast to
the existing algorithms, which have entirely focused on
grouping nodes, resulting in modules without overlap, by
performing clustering at the level of interactions instead of
genes this algorithm naturally incorporates imbricate sets
while revealing hierarchical organization in the network.
Interestingly, and consistent with the data in Figure 9, in
this analysis we observed that the starvation pathway is a
distinct set of interactions with low overlap with the other
three autophagy processes examined here (Additional file
2 Figure S6). In fact, it was shown elsewhere that portions
of the endoplasmic reticulum can be selectively packaged
into autophagosomes upon induction of the UPR or dur-
ing starvation. Under strong UPR-inducing conditions,
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ER-phagy depends on Atg proteins. However, when
induced by starvation, ER-phagy is only partly Atg-depen-
dent. This suggests that during starvation, selective uptake
of portions of the ER by autophagosomes may not use the
entire phagophore assembly machinery [58]. This is con-
sistent with our network observations showing that the
starvation pathway constitutes a relatively distinct pathway
among the ATG interactions.

Discussion
By integrating diverse sources of data based on physical
and genetic interactions, we constructed a probabilistic
network that can be used to analyze biological processes

occurring in the membranes of the yeast Saccharomyces
cerevisiae. The analysis of interactions involving mem-
brane proteins poses several challenges that are distinct
from those encountered for soluble proteins. For exam-
ple, the expression level of membrane proteins is lower
compared to soluble proteins [19]. Thus, any network
approach with the goal of good predictive power needs to
be re-assessed for membrane proteins.
Here we applied a statistical model combining hyper-

geometric distribution and logistic regression to increase
the coverage of membrane proteins, using the BIOGRID
database as a reference. In this combined model, the
hypergeometric distribution model was used to construct

Core machinery for membrane formation CVT pathway

Starvation pathway Pexophagy pathway

Human ortholog

Figure 9 Autophagy networks identified in PIN. The nodes (cyan, red) were spread manually to ease visualization and identified with the
corresponding SGD gene symbol. Yeast genes with identified corresponding human orthologs (red).
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two networks with the most statistically significant inter-
actions, while logistic regression was used to optimally
combine these two networks to increase the coverage of
membrane proteins without sacrificing prediction perfor-
mance. Our results reinforce the necessity of considering
coverage and prediction performance together in the pro-
cess of constructing probabilistic networks, since an
interaction dataset of high coverage is compromised if it
contains many false positives (low prediction perfor-
mance). The prevalence of false positive interactions is
suggested by the fact that despite numerous analyses
about 41% of yeast PPIs exist in only one database [59].
By increasing the score threshold to identify and to
remove non-specific interactions and by replacing lower
quality interactions with higher quality membrane asso-
ciated interactions our PIN resulted in a more robust
network for all interactions which can be used to analyze
a variety of biological data. Our approach also allows the
raw estimation of limits for prediction performance and
coverage (see Figures 3 and 4) of membrane interactions,
revealing the biased characteristics of publicly available
interaction data. The effectiveness of this approach was
shown by the increased coverage of membrane proteins
in PIN and by the comparable predictive performance
relative to the hypergeometric model alone.
In a similar approach, Xia et al. [6] integrated genomic

features (genome-wide sequence, function, localization,
abundance, regulation, and phenotype data in yeast) to
predict yeast helical membrane protein interactions using
a logistic regression classifier. Also, Zhang & Ouellette
[60] proposed a method to predict interactions between
membrane proteins using a probabilistic model based on
the topology of protein-protein interaction network and
that of domain-domain interaction network in yeast. Here,
we used a hypergeometric model plus logistic regression
to select interactions in BIOGRID in a manner which
effectively reduced the bias against membrane proteins in
the resulting network. Although these other approaches
also used logistic regression to represent interactions
involving membrane proteins more accurately, their
approach is a prediction algorithm designed to identify a
particular kind of membrane protein interactions using
training sets of interaction data [6,60]. In contrast, we
have constructed a PIN that allows the construction of
less biased networks with the goal of analyzing all mem-
brane proteins.
The PIN we constructed provided new insight into the

applicability of the CLR (centrality-lethality rule) to
membrane proteins, provided a more balanced view of
the UPR (unfolded protein response) and confirmed the
modular nature of the autophagy network while simulta-
neously expanding the number of PPIs predicted to be
involved in this crucial cellular process in yeast. Our
approach can be adapted to other contexts to increase

the coverage of specific classes of PPIs. For example, a
network could be constructed specifically to model inter-
actions occurring in mitochondria, which is also a cate-
gory under-represented in BIOGRID (Table 1). However,
for each such network, it is necessary to first choose an
adequate positive gold standard of proteins or interac-
tions in order to optimize parameters and maximize pre-
diction performance and coverage of the specific class of
interactions.
Our analysis suggests that some topological properties

of the yeast interactome can also be biased due to the
over-representation of proteins expressed in higher
levels, which are often essential proteins, and to the par-
allel low representation of membrane PPIs. Although
not directly related to the lethality-essentiality rule, the
scale-free model of biological networks is often used to
explain the robustness of these networks. However, this
explanation is made by assuming that highly connected
proteins tend to be essential and taking for granted that
proteins have widely different connectivities. We
observed in this study that part of this unequal distribu-
tion of degrees can be due to the bias towards abundant
proteins and, by extension, against membrane proteins.
In fact, our findings could help to explain why scale-free
topology of some partial interactome data cannot be
confidently extrapolated to complete interactomes [61].
In addition, it was also noted the discrepancies in
matching existing interactome networks to a scale-free
topology, suggesting that the structure of PPI networks
is better modeled by a geometric random graph than by
a scale-free model [62].

Conclusions
Our results suggest that selection against membrane pro-
tein interactions is a key factor determining the predic-
tion performance of PPI networks in yeast and probably
for other organisms. We demonstrate that this bias
affects topological properties of the resulting probabilistic
network. In addition, our findings also suggest that the
validity of the CLR, and other factors associated with PPI
networks, such as coverage of some interactions occur-
ring in membrane-associated compartments, are likely to
be affected by these constraints. Our simple computa-
tional approach was effective in decreasing this bias and
allowed the construction of a probabilistic network that
is more representative of the real interactions occurring
in yeast. Our PIN allowed us to make new predictions
about the regulation of UPR and autophagy, two essential
processes associated with subcellular membranes.

Methods
Construction of PIN using the guilty-by-association
approach
PIN was constructed in seven steps:
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1) Calculate the significance of each interaction in BIO-
GRID using hypergeometric distribution (see below) in
order to construct networks A and B (see paper). This
should be done separately for each network A and B.
2) Sum up the scores for redundant interactions in

each network A and B.
3) Combine networks A and B using logistic regres-

sion (see below) with different weights. This step gener-
ates 10 networks with weights of network A varying
between 0 and 1.
Training the 10 networks:
4) Divide the GO Slim terms between membrane and

non-membrane annotations. Train the network against
the training set of all genes-GO Slim annotations by
selecting two thirds of the pairs gene-GO Slim annotation.
These pairs will be used for training the network. The rest
is the test set. The training is done by summing up the
scores associated with the pairs gene-GO Slim annotation
used as training set, e.g., if a gene is associated in the net-
work to 3 membrane genes, the scores of these 3 interac-
tions are summed up. These scores are the -log10(p-value)
of the hypergeometric distribution calculated in the step 1,
which evaluates the significance of interactions, that is,
those most significant interactions have a lower p-value
(higher score).
Please note that there are two scores: one for the signifi-

cance of interactions (from the hypergeometric distribu-
tion) and the other for the association with membrane
genes, which is calculated by summing up these scores
(from the hypergeometric distribution) of all membrane
genes associated with that particular gene. Thus, the more
membrane genes a gene is associated with, the higher the
score (for membrane localization) for that gene.
5) Once the network is trained, that is, after each gene

has a score associated to the probability of being mem-
brane, obtain the true labels (membrane or non-mem-
brane) for each gene in test set by using the test set (from
step 4) of GO Slim annotations.
6) Calculate the AUC of precision-recall curves. To do

that, it’s necessary two vectors: one with the binary
values corresponding to true positives and false positives
(1 or 0, respectively) generated in the step 5, the other
vector contains the respective prediction scores.
7) Select one network (out of 10) with the best trade-

off between membrane content and AUC.

Hypergeometric distribution
We applied a probabilistic approach to construct a net-
work with less bias against membrane proteins by using
a simple and general error model based on the hyper-
geometric distribution to calculate the probability for
each interaction occurring at random [32]. This score
system has proved to be robust across different settings.
It penalizes high-degree “promiscuous” interactors since

the probability of occurrence of an interaction with this
type of partner is high in a random network. In other
words, this model penalizes proteins interacting with
many different partners because these interactions have
a high probability of occurring by random chance, indi-
cating strongly context-dependent interactions. Thus,
such cases receive a proportionally low score in the
network.
Given an interaction dataset, the probability that two

genes A and B interact with each other at random is:

− log P = − log

⎛
⎝min (n,m)∑

i=k

p(i|n, m, N)

⎞
⎠

Where:

p(i|n, m, N) =

(
n
i

)(
N − n
m − i

)
(

N
m

)

In this approach, P indicates the probability that genes
A and B will interact by chance. For each interaction:
n and m = number of interactions in which each gene

A and B is involved, respectively
N = total number of interactions observed in the

entire dataset
k = the number of times the interaction between A

and B is observed
We applied this hypergeometric distribution model to

construct two networks: network A, constructed based
on interaction datasets PF-PCA and SU-2HY, and net-
work B, constructed with data from the BIOGRID data-
base (version 2.0.57) without those two datasets.
Network A is enriched in interactions involving mem-
brane proteins.

Logistic regression
To combine the two networks (A and B) in such way
that the coverage of membrane PPIs was increased
while maintaining the prediction performance, we used
a simple logistic regression model with one free para-
meter to combine the scores of networks A and B by
optimizing a precision versus recall performance curve
[31]. Thus, for a given gene i and a target function j, let
the probability score computed by the networks A and
B be equal to PX(i,j) and PY(i,j), respectively. Then we
can calculate the corresponding combined score P(i,j)
defined as:

log(
P(i, j)

1 − P(i, j)
) = w. log(

Px(i, j)
1 − Px(i, j)

) + (1 − w). log(
py(i, j)

1 − Py(i, j)
)

Logistic regression was applied to combine the net-
works with the optimal weight parameter w. The factor
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w was optimized over the range from 0 to 1 (window =
0.1) to produce the highest area under the precision ver-
sus recall curve using as reference genes annotated as
membrane protein (GO:0016020). This produced 10
networks, each one using different weights for networks
A and B. The best weight (out of 10) was selected based
on the guity-by-association approach using the Preci-
sion-Recall curve and membrane interactions as
reference.

Analysis of GO enrichment
To analyze the enrichment of GO categories in each
level of significance of the PIN, we ranked the network
in decreasing order of scores and divided the interac-
tions into quintiles. We then randomly sampled 1000
interactions in each quintile and selected the unique set
of ORFs to perform a GO enrichment analysis using
BINGO [63]. Categories with enrichment more signifi-
cant than p < 0.001 after Bonferroni’s correction were
selected to be plotted.

Validation of the network
To calculate precision and recall, we performed three-
fold cross-validation to obtain a probability score for
each gene-GO Slim annotation using a guilt-by-associa-
tion approach, and used these scores to assess perfor-
mance [31]. Thus, we downloaded GO Slim annotations
and used this dataset by randomly selecting 1/3 of the
pairs gene-annotation to hold out for the testing set.
Therefore, we applied this analysis on one subset (the
training set), and validated on the other independent sub-
set (the testing set).

Network density
To calculate network density (Nden), we applied the for-
mula:

Nden = 2K/(N2 − N);

Where: N is the number of nodes and K is number of
interactions in the network.

Index of Degree and Essentiality (Indess)
We defined the Indess(k) of a network as the fraction of
the essential genes with degree greater than k divided by
the fraction of the non-essential genes with degree
greater than k:

Indess(k) =
e(k)/E
f (k)/F

Where:
e(k) = number of essential genes with degree greater

than k in the network
E = total number of essential genes in the network

f(k) = number of non-essential genes with degree
greater than k in the network
F = total number of non-essential genes in the

network
Thus, an Indess(k) > 1 indicates that essential genes

tend to have a higher degree than non-essential genes,
while an Indess(k) < 1 suggests essential genes tend to
have lower degree, and Indess(k) = 1 that there’s no dif-
ference between essential and non-essential genes in
terms of degree.

Assortativity coefficient
The assortativity is a correlation coefficient for the
degrees of linked nodes. A positive assortativity coeffi-
cient indicates that nodes tend to link to other nodes
with the same or similar degree [47].

Link communities
The algorithm based on link communities performs a
hierarchical clustering of interactions and considers a
module to be a set of closely interrelated interactions.
Given the set of node i and its neighbours n+(i), for link
pairs that share a node k, the similarity between links
eik and ejk is S(eik, ejk) = |n+(i) ∩ n+(j)|/|n+(i) U n+(j)|
[57]. We implemented this algorithm in MatLab. Then
we used the GENE-E [64] to perform the average-link-
age hierarchical clustering with Kendall’s tau as similar-
ity metric distance.

Additional material

Additional file 1: PIN network. PIN interactions with p-values and
scores.

Additional file 2: Supplementary figures. This file contains the
following Supplementary figures and table: Figure S1 - Network A
interactions are distributed evenly across the top 60,000 of the 94,879
interactions in PIN. Coverage of Network A (rich in membrane
interactions) is shown for interactions with different cutoffs of PIN.
Figure S2 - Construction of iREF network as a control weighted
network. The iREF network was constructed by the optimized
combination of two networks: A’ comprised of interactions not
previously used from the iREF database and B, the same network B used
to construct PIN. The area under the curve (AUC) of Precision-Recall plots
for the top 5,000 interactions was used for selecting the optimum
weight for network B using membrane proteins from GO Slim as an
established benchmark dataset. The AUC was calculated for different
weights for network B, and the weight corresponding to prediction
performance in the plateau with higher number of membrane
interactions (AUC = 0.38) was chosen as the optimal weight of network
B (0.8). Like PIN the performance of this network increased with
increasing membrane interactions. Figure S3 - The enrichment analysis
of PIN shows over-represented gene categories (red) occur only in
the lower significance quintiles. The analysis was repeated 10 times by
randomly resampling 1000 interactions in each different quintile of the
network (I-V). The median p-value of the 10 analysis is shown. A) Cell
compartment. B) Biological process. C) Molecular function. Figure S4 -
PIN increases the proportion of membrane associated interactions
in the network compared to a hypergeometric model or random
scoring. Coverage of interactions by PIN of genes with related GO terms.
A) membrane complexes (GO:0030119: AP-type membrane coat adaptor
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complex [17 proteins], GO:0072546: ER membrane protein complex [6
proteins], GO:0005744: mitochondrial inner membrane presequence
translocase complex [11 proteins], GO:0005742: mitochondrial outer
membrane translocase complex [8 proteins], GO:0030119: AP-type
membrane coat adaptor complex [17 proteins], GO:0072379: ER
membrane insertion complex [7 proteins], GO:0005744: mitochondrial
inner membrane presequence translocase complex [11 proteins]) or B)
Transport genes Figure S5 - Correlation between Indess(k) and
membrane content varies with k Indess(k) for k = 5-100 varies
between -0.5 and -0.2 and is always negative. Figure S6 - Hierarchical
clustering using PIN separates starvation induced genes from other
autophagy process genes. The similarity between interactions was used
to build a dendrogram where each leaf is a link (interaction) from the
original network and branches represent link (interaction) communities.
Each row or column represents an interaction in the autophagy network
and the values in the matrix are Z-scored similarity distances between
interactions. The red squares in the matrix represent modules as sets of
closely interrelated interactions. Each square in the matrix was examined
for overlap with each ATG process and annotated manually (bars to the
right). Table S1 - Network density and clustering coefficient are not
correlated with the fraction of membrane interactions reported by each
technique.

Additional file 3: GO enrichment of hubs. GO enrichment of hubs
(degree > 10) for different networks.

Additional file 4: Cytoscape file. Cytoscape format file of autophagy
and UPR interactions from PIN.
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